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Abstract. Every day a huge amount of digital data is generated. Pro-
cessing such big data encourages efficient data structure and parallelized
operations. In this regard, this paper proposes a graph-based method
reducing the memory requirement of the data storage. Graphs as a versa-
tile representative tool in intelligent systems and pattern recognition may
consist of many nonessential edges accumulating memory. This paper
defines the structure of such redundant edges in the neighborhood graph
of a 2D binary image. We introduce a novel approach for contracting the
edges that simultaneously assists in determining the structurally redun-
dant edges. In addition, finding a set of independent edges, the redundant
edges are removed in parallel with the complexity O(1). Theoretically, we
prove that the maximum number of redundant edges is bounded by half
of all edges. Practical results show the memory requirement decreases sig-
nificantly depending on the input data in different categories of binary
image data sets. Using the combinatorial map as the data structure, first
the topological structure of the graph is preserved. Second, the method
can be extended to higher dimensions (nD).

Keywords: Redundant edges · Connected component labeling ·
Binary image · Combinatorial map

1 Introduction

The amount of available data in intelligent systems has increased dramatically
in recent years [19,20], and this situation will continue to become more extreme
with the development of technologies [7,10]. Such circumstances necessitate the
development of sophisticated schemes promoting better structural representa-
tion. The structure of the data helps to preserve the topology of the image and
assists to achieve a compact representation of the data. This makes structure a
crucial part of data analysis. The structure of data gives the information about
the intrinsic relationships between the subset of the data. Helman et al. [9] stated
that extraction of relevant structure helps to reduce the data storage and assists
in better visualization. In their case the amount of storage required was approx-
imately one-tenth of the actual storage required for the data. Elimination of the
redundant data [18] plays a key role in achieving a compact representation of
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data and saving the storage memory. Besides, it largely depends upon the rep-
resentation technique, the data structure used for storage of representation, the
algorithm’s compliance with parallel processing, etc. This paper covers the points
related to a structure preserving algorithm for binary images. More specifically
we will look into the elimination of the structurally redundant data (see Sect. 3)
with a graph based representation (see Sect. 2.1) using the combinatorial maps
(see Sect. 2.3) as the data structure.

2 Motivations and Definitions

2.1 Graph-Based Representation

Graphs have the capabilities to represent both structured data (like images,
videos, grids) as well as unstructured data (like climate data, point cloud). Nar-
rowing down to images, graphs based representation are simple and effective. A
digital image can be easily represented using a 4-adjacent neighborhood graph.
Let G = (V,E) be the Region Adjacency Graph (RAG) of image P where V
corresponds to the vertex set and E corresponds to the edge set. The vertex
v ∈ V associates with the pixels in image P and the edge e ∈ E connects the
corresponding adjacent vertices. Let the gray-value of vertex g(v) = g(p) where
p ∈ P is a pixel in the image corresponding to vertex v. Let contrast(e) be an
attribute of an edge e(u, v) where u, v ∈ V and contrast(e) = |g(u)−g(v)|. Since
we are working with binary images only, the pixels (and corresponding vertices
can) have either of the two values 0 and 1. Similarly the edge contrast can have
only two possible values 0 and 1. The edges in the neighborhood graph can be
classified into the following two categories:

Definition 1 (Zero-edge). An edge e ∈ E is a zero-edge, e0, iff the contrast
between its two endpoints is zero.

Definition 2 (One-edge). An edge e ∈ E is a one-edge, e1, iff the contrast
between its two endpoints is one.

The set of edges classified as e0 is denoted as E0 and the set of edges classified
as e1 is denoted as E1. The edge set E = E0 ∪ E1.

2.2 Image Pyramid

Image Pyramids consist of a series of successively smaller images produced from a
base image. They are efficient hierarchical structures which are able to propagate
local information from the base level into a global one at the top of the pyramid.
Generally, two types of the pyramid, namely regular and irregular pyramid exist.

In regular pyramids [12] the resolution is decreased in regular steps and
therefore the size of the pyramid is fixed. On the contrary, in irregular pyramids
the size of the pyramid is not fixed and it is adapted to the image data. In
addition, unlike the regular ones, the irregular pyramids are shift- and rotation-
invariant [16] that make them useful to use in a variety of tasks, such as image
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segmentation [6] and object recognition. It should be noticed that the irregular
image pyramid is interpreted as the irregular graph pyramid when its pixels and
the neighborhood relations between adjacent pixels correspond to the vertices
and the edges of the graph, respectively.

Irregular Pyramids. [11,13–15] are a stack of successively reduced graphs
where each graph is constructed from the graph below by selecting a specific
subset of vertices and edges. For generation of irregular pyramids, we use the
two fundamental operations on graphs: edge contraction and edge removal
(Fig. 1). The edge contraction operation contracts an edge connecting two ver-
tices, and the two vertices are merged into one. All edges that were incident to
the merged vertices will be incident to the resulting vertex after the operation.
The edge removal operation removes an edge from the graph, without changing
the number of vertices or affecting the incidence relationships of other edges.
In each level of the pyramid, the vertices and edges that disappear in a level
above are called non-surviving and those that appear in the upper level surviv-
ing ones.

Definition 3 (Contraction Kernel (CK)). A spanning tree of a connected
component.

A contraction kernel contracts the non-surviving vertices to their correspond-
ing surviving vertex such that each connected component indicated by one sur-
viving vertex.

Fig. 1. Two different operations on an edge.

There are different structures to build the irregular pyramid such as simple
graphs [5], dual graphs [11] and combinatorial maps (CM) [4]. In the simple
graph the produced region adjacency graph (RAG) cannot distinguish between
different topological configurations [13], in particular between inclusion and mul-
tiple adjacency relationships of regions [5]. The problem with dual graphs is that
they cannot unambiguously represent a region enclosed in another one on a local
level [5]. Therefore, in this paper the CM, as a planar embedding of RAG, is
used which not only solves the mentioned problems but also provides an effi-
cient structure that preserves topological relations between regions and can be
extended to higher dimensions (nD).
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A plane graph is a graph embedded in the plane such that no two edges
intersect. In the plane graph there are connected spaces between edges and
vertices and every such connected area of the plane is called a face. The degree
of the face is the number of edges bounding the face. In addition a face bounded
by a cycle is called an empty face. In a non-empty face traversing the boundary
would require to visit vertices or edges twice.

2.3 Combinatorial Pyramid

A combinatorial pyramid is a hierarchy of successively reduced combinatorial
maps. A combinatorial map (CM) is similar to a graph but explicitly stores the
orientation of edges around each vertex. The combinatorial map (G) is defined
by a triple G = (D,α, σ) where the D is a finite set of darts. A dart is defined as
the half edge and it is the fundamental element in the CM’s structure. The α is
an involution on the set D, provides a one-to-one mapping between darts forming
the same edge such that α(α(d)) = d. The σ is a permutation on the set D and
encodes consecutive darts around the same vertex while turning counterclockwise
[17]. Note that the clockwise orientation is denoted by σ−1.

Figure 2 left, shows a set of adjacent darts with their σ relations in a face of
degree 4. Figure 2, right, shows the encoding of the darts. For instance, consider
e = (1, 2) where α(1) = 2, α(2) = 1, σ(1) = 5.

Fig. 2. Combinatorial map.

3 Structurally Redundant Edges

The definition of the term redundant edges differs depending on the application,
the representation and the data structure used for the implementation. In our
case, we are dealing with binary images. In order to obtain the structure of
the binary image, the relevant edges consist of a tree that spans the connected
components and the edges that interconnect the components. To detect the
redundant edges, it is needed to define an efficient method for selecting the CK.
Note that a connected component consists of edges with zero contrast (e0) only,
and the edges with contrast one (e1) connect two different connected components
together. Therefore, in a binary neighborhood graph, the contraction kernel is
selected among only e0s.
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3.1 Selecting the Contraction Kernel

Selecting the contraction kernel (CK) has a key role in detecting the redundant
edges in the neighborhood graph. To this aim, a totally ordered set is defined
over the indices of vertices. Consider the binary image has M rows and N columns
such that (1, 1) is the coordinate of the pixel (p ∈ P ) at the upper-left corner and
(M,N) at the lower-right corner. The corresponding 4-adjacent neighborhood
graph of the binary image has MN vertices. An index Idx(., .) of each vertex is
defined:

Idx : [1,M ] × [1, N ] �→ [1,M · N ] ⊂ N (1)
Idx(r, c) = (c − 1) · M + r (2)

where r and c are the row and column of the pixel, respectively. Figure 3 shows
the neighborhood graph of a 7 by 7 binary image where indices are from 1 to 49.
Since the set of integers is totally ordered each vertex has a unique index. The
important property of such totally ordered set is that every subset has exactly
one minimum and one maximum member (integer number). This property pro-
vides a unique orientation between non-surviving and surviving vertices.

Consider a non-surviving vertex v. In order to find the surviving vertex, vs,
an incident e0 must be found in its neighborhood. Such a neighborhood N (v) is
defined as follows:

N (v) = {v} ∪ {w ∈ V |e0 = (v, w) ∈ E0} (3)

if such neighborhood exists (|N (v)| > 1) the surviving vertex is:

vs = argmax{Idx(vs)| vs ∈ N (v), |N (v)| > 1} (4)

Definition 4 (Orientation of a e0). A e0 = (v, w) ∈ E0 is oriented from v
to w if w has the largest index among the neighbors, Idx(w) = max{Idx(u)|u ∈
N (v)}. All edges to the other neighbors remain non-oriented.

By such definition, a chain of oriented e0s connects each non-surviving vertex
to its corresponding survivor vertex. In Fig. 3 the oriented e0s are identified by
an arrow over each e0. The three vertices (25, 33 and 49) are surviving vertices
while the remaining vertices are non-surviving.

Proposition 1. Selecting the CK partitions vertices into non-surviving and sur-
viving vertices.

Proof. If the |N (v)| = 1, either there is no e0s around v or the index of v is
bigger than the indices of neighboring e0s. Therefore the v is a surviving vertex.
In case the |N (v)| > 1, since the indices are totally ordered, there is a maximum
in the neighborhood of v which is selected as survivor and the v becomes the
nun-surviving vertex. ��
Proposition 2. Every non-surviving vertex has a unique surviving vertex.
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Proof. Each tree of oriented e0s has one unique maximum as the index of the
surviving vertex. ��
Property 1. With the choice of Idx(.) and the coordinate axes in (1) a non-
surviving vertex contracts either to its adjacent right vertex or to its down vertex
where the right vertex has the higher priority.

Fig. 3. Combinatorial map.

3.2 Redundant Edges

Connectivity is an essential property in the structure of a hierarchical graph
pyramid. Nevertheless, there may be some edges the removal of which does not
harm the connectivity. We define such edges as redundant edges.

Definition 5 (Redundant-Edge (RE)). In an empty face, the non-oriented
edge incident to the vertex with lowest Idx is redundant iff:

– The empty face is bounded by only non-oriented edges with the same contrast
value.

– The empty face is bounded by non-oriented edges with the same contrast value
and oriented edges.

Based on the RE definition, an empty self-loop is redundant. In addition, in
an empty face of degree 2 (double edge), one of the edges is redundant. Figure 4
illustrates an empty face of different degrees where in each empty face the redun-
dant edge is indicated by RE.

Proposition 3. The upper bound of the number of redundant edges (REs) is
equal to half of the edges of the grid at the base level.
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Fig. 4. Example of redundant edge (RE) in different empty faces.

Proof. In a grid M by N, the number of vertices is MN and the number of edges
is 2MN −M −N . To preserve the connectivity the smallest graph is a spanning
tree of vertices with MN − 1 edges. Therefore, the maximum number of REs is:

Max|REs| = (2MN − M − N − (MN − 1)) = MN − M − N + 1 (5)

lim
M→∞ N→∞

(Max|REs|/E) = (MN −M −N +1)/(2MN −M −N) = 1/2 (6)

As the result, by growing M and N , the maximum number of REs becomes
maximally half of all the edges (E) at the base level. ��
Proposition 4. In every face of degree n (n > 1) is bounded by only e0s, one
of the non-oriented e0s is redundant.

Proof. By contracting an edge, every face of degree n > 2 after n−2 consecutive
contractions becomes a face of degree 2 which has a RE (Definition 5). ��
Proposition 5. In every face of degree n (n > 1) is bounded by only e1s and
oriented e0s, there is a redundant one-edge (RE1) .

Proof. Contracting all oriented e0s results in a face of degree 2 containing two
e1s between the same endpoints. Hence, one of the e1s is redundant. ��

Since edges classify into E0 and E1, the REs are partitioned into Redundant
Zero-Edges (RE0) and Redundant One-Edges (RE1) as well:

REs = RE0s
·∪ RE1s (7)

In Fig. 3, the RE0s are shown by black dashed-lines and the RE1s are shown by
red dashed-lines. Furthermore, the RAG at the top of the pyramid shows the
connections between three different connected components. Using the combina-
torial map structure, the inclusion relation is preserved because it is represented
by the loop a aroundthe vertex 25.

It should be noted that a neighboring graph at the base level may not have
any redundant edge. Consider a 4-connected graph that its vertices form a
checkerboard pattern. In such the case, all edges have contrast one that it means
there is no zero-edge and thus no RE0. Furthermore, based on the Proposition
5, no two one-edges connect the same vertices and thus there is no RE1 as well.
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3.3 Removing Redundant Edges in Parallel

In order to remove the REs, a dependency between edges is considered. We
define such dependency relation to detect a set of REs where by simultaneously
removing, the combinatorial structure is not harmed. To this aim, first a set of
dependent darts is defined as follows:

Definition 6 (Dependent Darts). All darts of a σ-orbit sharing an endpoint
are dependent darts.

Next, by considering the corresponding edge of each dart, e = (d, α(d)), the
set of dependent darts results in the set of dependent edges. Consequently,
two edges not sharing an endpoint are independent. In this manner, the only
case of the dependency between REs occurs when the REs share an endpoint.
In the grid at the base level the REs may be connected horizontally or vertically
and thus are dependent. However, consider a horizontal edge in an odd row of
the grid. This edge is independent to all other horizontal edges of other odd rows.
Similarly, a vertical edge in an odd column is independent of all other vertical
edges of other odd columns. Such independency exists between edges in even
rows and even columns as well. Figure 5 shows the set of independent edges at
the base. Therefore, all the edges in grid are classified to four independent classes
of edges. Consequently, removing all edges belonging to each independence class
(1, 2, 3 or 4) occurs simultaneously. This means, all the REs are removed in
only four steps where each step has the complexity O(1). Therefore removing
the redundant edges is performed in parallel.

Fig. 5. The four independent classes of edges in the grid at the base.

4 Memory Consumption

The topological structure is well captured in the combinatorial map. A combi-
natorial pyramid is a hierarchy of successively reduced combinatorial maps [4].
The pyramid needs to store the combinatorial map of each level that results in
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high memory consumption. To avoid such expensive memory requirement, we
use a canonical encoding [17] where the memory consumption of the pyramid is
equal to the size of the base level.

In the canonical encoding of the combinatorial pyramid, all the darts are
stored in a single array that preserves the history of pyramid construction. The
number of darts at the base level is equal to 2 · (2MN − M − N) in a binary
image M by N. Since nearly half of the edges at the base level (Proposition 3)
are redundant (RE), their removal decreases the memory requirements.

In addition, in the canonical pyramid, removing the darts performs in a
sequential manner. In contrast, using the independent set of edges (Sect. 3.3)
we are able to remove the independent set of corresponding darts in parallel.
Therefore, in the canonical array such darts are removed in parallel. Fig. 6(a)
illustrates the combinatorial map (CM) of a graph and Fig. 6(d) shows its canon-
ical encoding. The REs are shown by dashed-lines. Four REs are corresponding
to darts 1 to 8. The darts at the first row (1, 2, 5, 6) are removed in one step
(Fig. 6(b, f)). Afterwards, darts at the second row (3, 4, 7, 8) are removed
simultaneously (Fig. 6(c, g)). This results in, the smaller array of the canonical
encoding shown in Fig. 6(h).

5 Comparisons and Results

To highlight the advantages of the proposed method, we compare the memory
storage required with and without removing the REs. The comparison is done
with the originally proposed canonical representation [17]. It was used by [1,3,
6] for the implementation of topology preserving irregular image pyramids of
gray scaled and RGB images. In addition, recently the canonical encoding was
used in connected component labeling [2]. Since for our current research, the
input images are restricted to binary images, it is easy to identify the connected
components unlike the gray scale images. Considering the structure of the image,
the number of REs that can be eliminated are significantly higher than that in
a gray scale or RGB image.

In a combinatorial map, the involution α between the darts remain the same
even after performing the contraction and/or removal operations. The α rela-
tions can be encoded into the even and odd numbering of darts for each edge.
Thus all the modifications related to the contraction and the removal operation
on the graphs are performed by modifying the σ-permutation. In the canoni-
cal representation, the minimum storage required to store and to modify the
σ-permutation is equal to the number of darts i.e. twice the number of edges. By
using the proposed method, we eliminate the edges that are structurally redun-
dant and consequently reduce the storage space of darts and its permutation.

The algorithm was tested on several classes of images from the YACCLAB [8]
dataset. Table 1 displays the outcome of the proposed method. The first column
shows the name of the image class in the data set and an example from it,
while the second column displays the ‘size’ of the image. The number of images
(‘#Images’) from each class, on which the implementation was performed is
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Fig. 6. Memory usage in the canonical encoding.

displayed in the third column. The forth column gives the percentage of vertices
that survive (‘|Vs|/|V |’). Since there is a significant variation in the size of the
image, the number of REs are expressed in terms of percentage of the actual
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Table 1. Results over images of different categories from (YACCLAB [8]).

Database Example Size #Images |Vs|/|V | |REmin| |REµ| std(|RE|)
M
it
oc
ho

nd
ri
a

768× 1024 495 0.33% 49.01% 49.44% 0.0073

M
ed

ic
al

890× 886 189 2.74% 41.18% 46.87% 0.0145

F
in
ge
r-
pr
in
t

300× 300 962 3.50% 42.50% 46.05% 0.0108

M
R
I

256× 256 1170 2.72% 44.42% 46.49% 0.0114

3d
pe

s

704× 576 2400 0.07% 49.81% 49.84% 0.0019

H
ilb

er
t

127× 127 512 2.43% 41.31% 45.25% 0.0108

R
an

do
m

64× 64 89 18.90% 23.18% 27.66% 0.0407

number of edges. The last three columns display the lowest (‘|REmin|’), and the
average number of REs (‘|REµ|’) along with the standard deviation (‘std(|RE|)’)
over all images from each dataset.

The redundancy in the random images is notably lower than that in the
other class of images. This can be observed in the number of surviving vertices
as well. This happens due to the fact that the number of isolated vertices (vertices
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surrounded by e1s only) are higher, making the connected component smaller in
size. The worst case occurs in a checkerboard pattern where all the vertices are
isolated making each region containing a single pixel. In such a case, none of the
edges are redundant. In contrast, an image with only black (0) or only white (1)
color will have 50% of the REs.

6 Conclusion and Future Works

The paper presents a new formalism to define redundant edges in the neighbor-
hood graph of a 2D binary image. By proposing the new method for selecting the
contraction kernels these redundant edges are efficiently detected and removed
before the contraction operation. We prove that the amount of redundant edges
may reach up to half of the edges at the base level with a grid like structure.
The experiments show that most classes of images have 45%–49% of redundant
edges (except for artificially generated random binary images). As a result, the
memory consumption is reduced by 45%–49% while using combinatorial map
as the data structure. Furthermore, all the redundant edges can be removed in
parallel with a constant algorithmic complexity O(1). For the future work, we
are going to develop the method for gray-scale images. Secondly, by using the
combinatorial structure we will work on extending the redundant edges to higher
dimensions (nD).
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